На правах рукописи

Ehap

Еникеева Камила Руслановна

Диалкилфосфорилпиридины и –хинолины и их комплексы с некоторыми 3*d*- и 4*f*-металлами

Специальность 1.4.8. Химия элементоорганических соединений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук Работа выполнена в Институте органической и физической химии им. А.Е. Арбузова – обособленном структурном подразделении Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук»

Научный	доктор химических наук, доцент				
руководитель:	Мусина Эльвира Ильгизовна				
Официальные оппоненты:	доктор химических наук, профессор Верещагина Яна Александровна профессор кафедры физической химии Химического института им. А.М. Бутлерова Казанского (Приволжского) федерального университета, г. Казань				
	доктор химических наук Куропатов Вячеслав Александрович ведущий научный сотрудник лаборатории металлокомплексов с редокс-активными лигандами Института металлоорганической химии им. Г.А. Разуваева РАН, г. Нижний Новгород				
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А. Н. Несмеянова Российской академии наук, г. Москва				

Защита диссертации состоится <u>21 июня 2023 года в 14 часов 30 минут</u> на заседании диссертационного совета 24.1.225.01 при Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» по адресу: 420088, г. Казань, ул. Академика Арбузова, д. 8, ИОФХ им. А.Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН, конференц-зал.

С диссертацией можно ознакомиться в научной библиотеке ИОФХ им. А.Е. Арбузова – обособленного структурного подразделения ФИЦ КазНЦ РАН и на сайте http://www.iopc.ru/.

Отзывы на автореферат в двух экземплярах просим присылать по адресу: 420088, г. Казань, ул. Академика Арбузова, д. 8, ИОФХ им. А.Е. Арбузова, ученому секретарю совета, e-mail: toropchina@iopc.ru

Автореферат разослан «28» апреля 2023 г.

Учёный секретарь диссертационного совета, кандидат химических наук

Topos

Торопчина А.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Третичные фосфиноксиды (ТФО) являются широко известным классом соединений, обладающих способностью взаимодействовать с большинством ионов металлов, образуя стабильные комплексы. Введение различных функциональных групп в молекулы ТФО позволяет эффективно регулировать их комплексообразующую способность и селективность, а также открывает возможности для настройки физических свойств образующихся комплексов и расширяет их применимость как в каталитических реакциях, так и в качестве биологически активных и люминесцентных систем. Так, молекулы фосфорорганических соединений, содержащие гетероароматические фрагменты (пиридильные, имидазольные, хинолильные), сочетают два донорных координирующих центра различной природы: «жесткий» донорный центр – атом кислорода, и «промежуточный» донорный центр – sp²-гибридизованный атом азота в гетероциклических системах, что позволяет отнести их к гибридным N,O-лигандам. Такие лиганды способны стабилизировать катионы металлов в различных степенях окисления, и образовывать моно- и полиядерные гомо- и гетерометаллические металлокомплексы, которые находят применение в катализе, медицинской химии и фотоэлектрических материалах. В частности, фосфорильные N,О-лиганды являются уникальными в применении в качестве экстрагирующих агентов для актиноидов и лантаноидов из отработанных радиоактивных отходов. Комплексы 3d- и 4f-переходных металлов на основе N,O-гибридных лигандов широко используются в качестве ингибиторов горения, в электрохимических окислительно-восстановительных реакциях, переносчиков молекулярного кислорода в реакциях эпоксидирования олефинов и окисления других органических субстратов. Комплексы N-гетероциклсодержащих фосфиноксидов с биогенными металлами, а именно, медью, кобальтом, марганцом, никелем и цинком, за счет высокой биосовместимости и относительно низкой токсичности, являются перспективными компонентами противоопухолевых средств. Люминесцентные комплексы цинка(II) с N,О-донорными лигандами находят применение в нелинейной оптике, а также в качестве светособирающих материалов для фотокатализа и молекулярного зондирования, а комплексы марганца(II) и лантаноидов(III) вызывают большой интерес исследователей благодаря высоким квантовым выходам эмиссии и уникальным фото-, трибо- и электролюминесцентным свойствам, что делает их потенциальными кандидатами для использования в органических светоизлучающих диодах.

В то же время, несмотря на высокий практический потенциал функционализированных фосфиноксидов и их комплексов, в настоящее время количество удобных методов получения функционализированных фосфиноксидов, а следовательно, и их комплексов, сильно ограничено, причем эти методы, как правило, требуют применения дорогостоящих катализаторов. Поэтому разработка простых и удобных методик синтеза фосфиноксидов, несущих дополнительные функции, и исследование их комплексообразующих свойств является актуальной задачей.

<u>Степень разработанности темы</u>. Данных о комплексах 3*d*-металлов на основе N.О-лигандов, где источником О-донорного центра являются карбоксильная. карбонильная, проявляют каталитические, гидроксильная группы, которые биологические, люминесцентные свойства, достаточно много, и данная область исследований находится в тренде современной химической науки. Благодаря различной природе донорных центров, при комплексообразовании образуются моно- и полиядерные комплексы с О-монодентатной и, чаще, N,O-хелатной координацией лигандов. Класс N,O-

3

лигандов, содержащих в качестве источника О-координационного центра фосфорильные и фосфатные функциональные группы (пиридилсодержащие фосфаты, фосфатные основания Шиффа, фосфорамидаты, фосфиноксиды, содержащие N-гетероциклический фрагмент), менее изучен. Анализ литературных данных показал, что комплексы 3dметаллов на основе фосфорилсодержащих N_{sn²},О-лигандов обладают широким спектром потенциального применения: катализ (комплексы Ni(II), Co(II), Fe(II)), магнитные свойства (Cu(II), Ni(II), Co(II), Fe(II)), фотофизические свойства (Cu(I)), перенос молекулярного кислорода (Fe(III), Fe(II)). Люминесцентные комплексы 4f-металлов на основе полидентатных фосфорилсодержащих N_{sp}²,О-лигандов В литературе представлены достаточно хорошо, при этом показано, что комплексы обладают интенсивной люминесценцией в твердом состоянии и в растворе с высокими квантовыми выходами, а также обладают каталитическими свойствами в ряде реакций. Тем не менее, следует отметить отсутствие в литературе данных о синтезе и свойствах комплексов марганца(II) на основе фосфорилсодержащих N_{sp}2,О-лигандов, о люминесцентных свойствах комплексов цинка(II) на основе фосфорилсодержащих N,О-лигандов, и лишь единичные примеры исследований биологических свойств комплексов переходных металлов на их основе и даже самих фосфиноксидов, что представляет несомненный интерес. Кроме того, в большинстве синтезированных лигандов и полученных на их основе комплексов атом фосфора был связан с тремя ароматическими либо гетероароматическими заместителями, а функционализированные фосфиноксиды с алкильными заместителями у атома фосфора практически не изучены. В то же время изменение электронных свойств и стерической загруженности атома фосфора способно привести к изменению реакционной способности лиганда, а также к существенным изменениям свойств получаемых комплексов.

Целью работы является синтез диалкилфосфорилпиридинов и –хинолинов и их комплексов с некоторыми 3*d*- и 4*f*-металлами для выявления потенциала их каталитических, биологических и люминесцентных свойств для практического применения.

В данной работе объектами исследования являются циклические и ациклические диалкилфосфиноксиды с N-гетероциклическими заместителями, как перспективный класс гибридных хемилабильных лигандов, которые сочетают в себе «жесткий» донорный центр – атом кислорода, и «промежуточный» донорный центр – sp^2 -гибридизованный атом азота в 1,4- и 1,5-взаимном расположении. Для комплексообразования в качестве металлов рассматриваются представители 3*d*- и 4*f*-металлов, комплексы которых обладают потенциальными каталитическими (Mn(II), Ni(II), Cu(II)), биологическими (Mn(II), Ni(II), Cu(II)) и люминесцентными (Mn(II), Zn(II)) свойствами.

<u>Научная новизна.</u> Впервые синтезированы новые N-гетероциклсодержащие фосфиноксиды циклического и ациклического строения с алкильными заместителями у атома фосфора с 1,4- и 1,5-расположением N,O-донорных центров.

Изучено комплексообразование N-гетероциклсодержащих фосфиноксидов с 3*d*-и 4*f*-переходными металлами (Mn(II), Ni(II), Cu(II), Zn(II), Eu(III), Tb(III) и Yb(III)). Показано, что лиганды - N-гетероциклсодержащие фосфиноксиды - проявляют N,Oхелатную и О-монодентатную координацию, при этом количество координирующих ион металла лигандов определяется размером хелатного угла, стерической загруженностью и гибкостью лиганда, а также природой противоиона и условиями проведения реакции.

Установлено, что комплексы марганца(II) на основе диэтил(пиридин-2ил)фосфиноксида и диизопропил(пиридин-2-илметил)фосфиноксида являются эффективными катализаторами электрохимического синтеза водорода с использованием протонированного диметилформамида в качестве источника протонов.

Впервые установлено, что диалкилфосфорилпиридины и –хинолины и их комплексы Mn(II), Zn(II) обладают синглетной люминесценцией в сине-зеленой областях спектра ($\lambda_{em} = 362 - 505$ нм), при этом комплексообразование с ионом металла приводит к увеличению квантового выхода эмиссии. Комплексы Eu(III) и Tb(III) на основе диалкилфосфорилпиридинов и –хинолинов люминесцируют в широком диапазоне максимумов эмиссии: $\lambda_{em} = 488 - 702$ нм. Эмиссия в комплексах марганца(II) и цинка(II) обусловлена внутрилигандными π - π * переходами, а в комплексах лантаноидов(III) - металлоцентрированными *f*-*f*-переходами.

Впервые установлено, что N-гетероциклсодержащие фосфиноксиды являются нетоксичными в отношении нормальных клеточных линий Chang Liver, а хелатирование с ионом металла избирательно усиливает цитотоксичность лигандов по отношению к раковым клеткам HuTu80 и M-HeLa. Диизопропилфосфорилхинолин и P-пиридил-P-оксид 1,3,5-диазафосфоринана и их комплексы меди(II) и цинка(II) проявляют наибольшую цитотоксичность по отношению к M-HeLa и HuTu80 с высокой селективностью, что превышает селективность известных противоопухолевых препаратов тамоксифена, олигомицина, доксорубицина, 5-фторурацила и сорафениба.

Практическая значимость работы. В рамках данной работы впервые разработаны новые удобные методики синтеза диалкилфосфинов и диалкилфосфиноксидов с пиридильным и хинолильным фрагментом при атоме фосфора, позволяющие получать Предложен N.P(O)-лиганды с высокими выходами. новый метод синтеза диалкил(пиридин-2-ил)фосфиноксидов, основанный на нуклеофильном присоединении к активированномому пиридин-N-оксиду. Разработаны методики синтеза комплексов с 3dпереходными металлами (Mn(II), Ni(II), Cu(II), Zn(II)) и 4f-металлов (Eu(III), Tb(III), Yb(III)) на основе диалкилфосфорилпиридинов И -хинолинов. Обнаружена каталитическая активность комплексов Mn(II) в электрохимической реакции выделения водорода: моноядерные комплексы марганца(II) на основе 1,5-N,О-лигандов являются эффективными катализаторами электрохимического синтеза водорода, отношение максимума тока нового пика к току пика восстановления комплексов I_{кат}/I_{пика} составило 9.8 и 17.7 соответственно.

Диалкилфосфорилпиридины и –хинолины и их комплексы Mn(II), Ni(II), Cu(II) и Zn(II) обладают цитотоксичностью в отношении раковых клеточных линий M-HeLa (IC₅₀ = $13.1\pm1.1-100$ мкM) и HuTu80 (IC₅₀ = $9.4\pm0.7-100$ мкM), и практически все соединения являются безопасными в отношении нормальных линий Chang Liver ($46.3\pm3.7-577$ мкM) по сравнению со стандартными противоопухолевыми препаратами, что делает их потенциально применимыми в медицинских целях. Среди исследованных соединений комплекс меди(II) на основе диизопропилфосфорилхинолина и комплекс цинка(II) на основе диизопропилфосфорилхинолина и комплекс цинка(II) на основе Р-оксида 1,3,5-диазафосфоринана являются самыми высокоселективными в отношении клеточных линий HuTu80 с индексами селективности 15 и 17, соответственно, что превышает селективность известных противоопухолевых препаратов тамоксифена, доксорубицина, сорафениба, 5-фторурацила и олигомицина. Комплексы марганца(II) и цинка(II) обладают эмиссией в сине-фиолетовой и сине-зеленой областях спектра с наносекундными временами жизни соответственно, и с этой точки зрения они являются перспективными материалами для получения синих источников излучения OLED устройств.

Положения, выносимые на защиту.

Синтез диалкилфосфиноксидов с пиридильным и хинолильным фрагментом при

атоме фосфора, основанный на а) окислении третичных пиридилсодержащих фосфинов; б) взаимодействии диалкилфосфинистых кислот с пиридил-, хинолилсодержащими хлорпроизводными в сверхосновной среде; в) нуклеофильном присоединении к активированному пиридинN-оксиду; структура диалкилфосфорилпиридинов и хинолинов в растворе и кристаллическом состоянии.

Синтез комплексов на основе диалкилфосфорилпиридинов и –хинолинов с производными ионов Mn(II), Ni(II), Cu(II), Zn(II), Eu(III), Tb(III) и Yb(III), и их структура.

Каталитические свойства комплексов Mn(II) с диалкилфосфорилпиридинами и – хинолинами, фотофизические свойства диалкилфосфорилпиридинов и –хинолинов и их комплексов Mn(II), Zn(II), Eu(III), Tb(III); цитотоксические свойства диалкилфосфорилпиридинов и –хинолинов и их комплексов Mn(II), Zn(II) и Cu(II) по отношению к клеточным линиям M-HeLa, HuTu80 и Chang Liver.

Апробация работы. Результаты исследований докладывались на итоговых научных конференциях Федерального исследовательского центра «Казанского Научного Центра Российской Академии Наук» (2017-2022), II Международной школе-конференции студентов, аспирантов и молодых ученых «Материалы и технологии XXI века» (Казань -2016), ХХ всероссийской молодежной школы-конференции по органической химии (Казань 2017), Научной конференции «Динамические процессы в химии элементорганических соединений», посвящённой 115-летию со дня рождения академика Б. А. Арбузова (Казань – 2018), V Европейской Конференции по неорганической химии (EICC-5) (Москва - 2019), XXI Менделеевском съезде по общей и прикладной химии (Санкт-Петербург - 2019), Х конференции молодых ученых по общей и неорганической химии (Москва – 2020), II Научной конференции «Динамические процессы в химии элементорганических соединений», посвященной 75-летию ИОФХ им. А.Е. Арбузова и КНЦ РАН (Казань - 2020), XI Конференции молодых ученых по общей и неорганической химии (Москва – 2021), 23-й Международной конференции по химии фосфора 2021), XXVIII Международной Чугаевской (Częstochowa конференции по координационной химии (Ольгинка – 2021), III Научной конференции с международным участием «Динамические процессы в химии элементоорганических соединений» (Казань -2022).

Публикации. По результатам диссертации опубликовано 6 статей в журналах, входящих в перечень, рекомендуемый ВАК, и 11 тезисов докладов.

<u>Структура и объем диссертации.</u> Диссертационная работы изложена на 222 страницах, состоит из введения, 3 глав, заключения, списка сокращений, списка литературы и приложения. Работа содержит 23 таблицы, 87 схем и 59 рисунков. Библиографический список насчитывает 257 ссылок.

Соответствие диссертации паспорту специальности. Диссертационная работа по содержанию и научной новизне соответствует паспорту специальности 1.4.8. Химия элементоорганических соединений по ряду пунктов: 1. Синтез, выделение и очистка новых соединений; 2. Разработка новых и модификация существующих методов синтеза элементоорганических соединений; 4. Развитие теории химического строения элементоорганических соединений; 6. Выявление закономерностей типа «структура – свойство»; 7. Выявление практически важных свойств элементоорганических соединений.

<u>Работа выполнена</u> в лаборатории фосфорорганических лигандов Института органической и физической химии им. А.Е. Арбузова – обособленного структурного подразделения Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» по темам «Создание интеллектуальных систем и функциональных

материалов для нано- и биотехнологий, элементной базы наноэлектроники и оптоэлектроники, устройств преобразования и хранения энергии. Диагностика дисперсных систем, наночастиц и материалов, включая наноматериалы» - AAAAA18-118041760011-2 и «Фундаментальные основы молекулярного конструирования, физикохимического анализа строения и функциональных свойств новых интеллектуальных систем и материалов для современных наукоемких технологий в области биомедицины, катализа, энергетики, нано- и оптоэлектроники» (FMEG-2022-0002) - 122011800132-5. Работа выполнена при финансовой поддержке РФФИ (№ 20-33-90076), Erasmus + Mobility.

<u>Личный вклад автора.</u> Диссертант лично выполнила всю экспериментальную часть работы, осуществила анализ и обработку данных физико-химических методов исследования. Соискателем самостоятельно проведен анализ литературы, обобщены результаты проделанной экспериментальной работы и сформулированы основные положения, выносимые на защиту. Она также принимала участие в подготовке публикаций по теме диссертационной работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность, сформулированы цель и задачи работы, представлены научная новизна исследований, их теоретическая и практическая значимость. Первая глава представляет собой литературный обзор, где рассматриваются известные комплексы 3d- и 4f-металлов на основе N,O-лигандов общей формулы $R_2P(O)N_{sp^2}$, где R = Ar, Alk, их структурные особенности и практически полезные свойства. Вторая глава содержит обсуждение экспериментальных результатов. В ней описываются синтез, структурные особенности диалкилфосфорилпиридинов и хинолинов; их координационные свойства по отношению к ионам 3d-металлов (Mn(II), Ni(II), Cu(II), Zn(II)) и 4f-металлов (Eu(III), Tb(III), Yb(III)), а также структура, каталитические, фотофизические и биологические свойства полученных соединений. Третья глава представляет собой экспериментальную часть, где собраны данные о методиках проведения синтеза новых соединений И ИХ физико-химических характеристиках.

1. Синтез и структура диалкилфосфорилпиридинов и -хинолинов

Объектами исследования являются диалкилфосфорилпиридины и -хинолины с различным взаимным расположением донорных центров (1,4-N,O- и 1,5-N,O-лиганды), обладающие различной гибкостью и хелатирующей способностью (Рисунок 1).

Рисунок 1. Структура исходных лигандов.

Варьирование циклической и ациклической структур фосфорильных фрагментов, а также объема заместителей изменяет конформационную жесткость и стерическую загруженность лигандов, тем самым влияя на их координационные свойства.

1.1. Окисление третичных фосфинов

Одним из самых распространённых синтетических подходов к получению фосфиноксидов является окисление соответствующих третичных фосфинов. Поэтому нами первоначально были синтезированы третичные фосфины 1, 2, 5 _ 8. Диэтил(пиридин-2-ил)фосфин (1) был получен охарактеризован впервые. И Диизопропил(пиридин-2-ил)фосфин (2)ранее получали последовательным взаимодействием 2-бромпиридина с *n*BuLi, и с (*i*-Pr)₂PCl. данной В работе диэтил(пиридин-2-ил)фосфин (1), диизопропил(пиридин-2-ил)фосфин (2) И фосфоланопиридины 5 – 7 были получены взаимодействием PyPH₂ с бромэтаном, 2бромпропаном или 1,2-дихлорбутаном в сверхосновной среде (КОН/диметилсульфоксид (ДМСО)), использующейся для генерирования фосфид-аниона, с выходами 50% (1), 80% (2) и 29-39% (5-7) (Схема 1).

Оказалось, что взаимодействие (пиридин-2-ил)фосфина с бромэтаном или 2бромпропаном в среде КОН/диметилформамид (ДМФА) приводит только ко вторичным этил(пиридин-2-ил)фосфину (**3**) и изопропил(пиридин-2-ил)фосфину (**4**), о чем свидетельствуют значения химического сдвига и константы спин-спинового взаимодействия ¹*J*_{PH} в спектре ЯМР ³¹Р при -41.4 (¹*J*_{PH} = 210 Гц) для **3** и -22.0 м.д. (¹*J*_{PH} = 209 Гц) для **4**.

Фосфин 1 был также получен другим способом, основанном на известной способности связи Р-С_{Ar} к разрыву под действием лития, с образованием соответствующих фосфидов лития. Так, последовательное замещение фенильных групп в трифенилфосфине на этильные путем его взаимодействия с двухкратным избытком металлического лития в тетрагидрофуране ($T\Gamma\Phi$) и этилбромидом в $T\Gamma\Phi$ привело к получению диэтилфенилфосфина, который затем вводился в аналогичную реакцию с литием и 2-бромпиридином с образованием целевого фосфина 1 с выходом 30% (Схема 2).

$$Ph_{3}P \xrightarrow{1) 2Li}{12} Ph_{2}PEt \xrightarrow{1) 2Li}{12} Ph_{2}PEt \xrightarrow{1) 2Li}{12} PhPEt_{2} \xrightarrow{1) 2Li}{12} PhPEt_{2} \xrightarrow{1) 2Li}{12} PhPEt_{2} \xrightarrow{1) 2Li}{12} PhPEt_{2}$$

Схема 2. Синтез диэтил(пиридин-2-ил)фосфина 1 из трифенилфосфина.

Несмотря на несколько меньший выход целевого фосфина (20% по Ph₃P) по сравнению с полученным из первичного фосфина, достоинством этого метода является коммерческая доступность трифенилфосфина и меньшее количество стадий, учитывая двухстадийное получение исходного первичного фосфина. Кроме того, таким способом

на последней стадии в молекулу фосфина можно вводить различные N-гетероциклические фрагменты за счет использования соответствующих доступных галогенпроизводных.

Представитель циклических третичных фосфинов с пространственно загруженными α-фенилбензильными заместителями был получен реакцией конденсации типа Манниха с выходом 70% по разработанной в нашей группе методике (Схема 3).

Схема 3. Синтез фосфина 8.

Третичные фосфины **1**, **2**, **5** - **7** представляют собой пахнущие жидкости, соединение **8** – белый кристаллический порошок, хорошо растворимые в большинстве органических растворителей. В спектрах ЯМР ³¹Р соединений **1**, **2** и **5** - **8** наблюдается типичный для третичного фосфина сигнал при -10.4 м.д., +15.1 м.д., -10.9 м.д., -12.0 м.д., -12.4 м.д., -57.5 м.д., соответственно.

Окисление фосфинов 1, 2, 5 - 8 30%-ным водным раствором перекиси водорода в этаноле или ацетоне привело к образованию соответствующих целевых фосфиноксидов 9 - 14 с выходами 55-88% (Схема 4).

Соединения 9 - 13 представляют собой бесцветные прозрачные маслянистые жидкости, фосфиноксид 14 – белый кристаллический порошок, растворимые в большинстве органических растворителей. Кроме того, соединения 9 – 13 растворимы в воде.

1.2. Нуклеофильное присоединение к активированному пиридин N-оксиду

В качестве альтернативного подхода, упрощающего синтез третичных фосфиноксидов, впервые был предложен метод, основанный на нуклеофильном диалкилфосфинистых присоединении кислот К активированному пиридину. Достоинствами данного метода являются: простота проведения реакции, коммерчески доступные исходные диалкилфосфинистые кислоты и умеренные выходы. По этому методу целевые пиридилсодержащие фосфиноксиды 9 и 10 были получены с выходами 25% и 26%, соответственно (Схема 5).

Схема 5. Синтез лигандов 9 и 10.

Следует отметить, что суммарный выход лигандов **9** и **10**, полученных окислением третичных фосфинов, был существенно ниже: ~ 7 - 10% в расчете на исходный пиридин-N-оксид или ~15% на Ph₃P.

1.3. Взаимодействие диалкилфосфинистых кислот с пиридил-, хинолилсодержащими хлорпроизводными в сверхосновной среде

Синтез 1,5-N,О-лигандов (15 – 18), где N-гетероцикл отделен от фосфиноксидного фрагмента метиленовым мостиком, был осуществлен по реакции диалкилфосфинистых кислот с гидрохлоридом 2-(хлорометил)пиридина или гидрохлоридом 2-(хлорометил)хинолина в сверхосновной среде (Схема 6).

Схема 6. Синтез лигандов 15 - 18.

Фосфиноксиды 15 – 18 были выделены с выходами 45-70% и за исключением кристалличного соединения 18 представляли собой светло-желтые маслянистые жидкости. Лиганды 15 - 18 растворимы в большинстве органических растворителей, а также в воде.

1.4. Структура диалкилфосфорилпиридинов и -хинолинов

Состав и структура всех полученных фосфиноксидов 9 - 18 были определены комплексом физико-химических методов анализа. Состав и чистота соединений были доказаны данными элементного анализа и масс-спектрометрии. Структура соединений 9 - 18 была подтверждена методами ЯМР- и ИК-спектроскопии и, для соединений 14 и 18 – рентгеноструктурного анализа (РСА). Масс-спектры методом ESI (ионизация распылением в электрическом поле) и MALDI (матрично-активированная лазерная десорбция/ионизация) фосфиноксидов 9 – 18 демонстрируют наличие молекулярных ионов, соответствующих составу [M+H]⁺ и [M+Na]⁺. В ИК-спектрах лигандов 9 - 18 наблюдаются интенсивные характеристические полосы при 1157 - 1186 см⁻¹, соответствующие валентным колебаниям P=O связи. В спектрах ЯМР ³¹P соединений 9 – 13, 15 - 18 наблюдается один сигнал в области при 48.3 - 65.0 м.д. Заметное сильнопольное смещение до 18 м.д. наблюдается для 5-окса-1,3,5-диазафосфоринана 14, что связано с дезэкранирующим влиянием двух близкорасположенных к атому фосфора аминогрупп. В спектрах ЯМР ¹Н наблюдаются сигналы протонов N-гетероароматического фрагмента в интервале 8.47 - 7.11 м.д. и протонов алкильных заместителей с соответствующими интегральными интенсивностями. Структура лигандов 14 и 18 была подтверждена данными РСА (Рисунки 2, 3).

Рисунок 2. Молекулярная структура соединения 14.

Шестичленный гетероцикл молекулы 14 имеет конформацию «кресло». Пиридильный заместитель при атоме фосфора расположен экваториально, атом кислорода – аксиально. Бензгидрильный заместитель при атоме N2 занимает экваториальное положение, при атоме N3 – аксиальное. Атомы азота диазафосфоринанового цикла имеют тригональнопирамидальную геометрию (сумма валентных углов составляет 335.8(1) и 336.7(1)°).

Рисунок 3. Молекулярная структура соединения **18**.

В молекуле **18** атом фосфора имеет пирамидальную конфигурацию (сумма углов 318.46°), метиленовый мостик между атомом фосфора и пиридиновым кольцом изогнут и угол Р-С_{CH2}-С_{Ру} составляет 116.62°. Длина связи Р=О в **14** составляет 1.488(2) Å, в **18** - 1.488(3) Å. В кристаллах соединений **14** и **18** наблюдаются множественные водородные связи N····H и O····H.

2. Изучение комплексообразующих свойств диалкилфосфорилпиридинов и – хинолинов

Синтезированные N-гетероциклсодержащие диалкилфосфиноксиды были использованы в качестве структурообразующих лигандов для конструирования комплексов, обладающих каталитическими, люминесцентными и биологическими свойствами. В качестве металлов для исследования были выбраны доступные 3*d*-металлы (Mn, Ni, Cu, Zn), образующие устойчивые, как правило, октаэдрические комплексы с фосфиноксидами, и типичные представители 4*f*-элементов - Eu, Tb, Yb.

2.1. Координационные свойства 1,4-N,О-лигандов 2.1.1. Синтез комплексов Mn(II)

При взаимодействии 1,4-N,О-лигандов с хлоридом марганца(II) в соотношении лиганд : металл = 2 : 1 образуются два типа димерных комплексов, где роль мостиковых лигандов выполняет либо кислородный центр лиганда (комплексы **19** и **20**), либо хлоролиганды (комплексы **21** и **22**) (Схема 7).

Рисунок 4. Молекулярная структура комплекса 19.

Схема 7. Синтез комплексов **19 - 22**.

Рисунок 5. Структура катиона комплекса 22.

Комплексы 19 – 21 были выделены из реакционных смесей в виде белых порошков, хорошо растворимых в большинстве органических растворителей. В масс-спектрах MALDI комплексов 19 - 21 наблюдаются пики с m/z 456, 1149 и 512 соответственно, соответствующие составу [MnL₂Cl]⁺. Более низкочастотное положение полос поглощения валентных колебаний связи P=O при 1153-1147 см⁻¹, в ИК-спектрах комплексов по сравнению со свободными лигандами подтверждает координацию фосфорильной группы. Перекристаллизация комплекса 19 из этанола приводит к выделению единичных кристаллов комплекса 22. Согласно данным РСА, в нейтральных комплексах 19 и 20 (рисунок 4) два иона марганца координированы по хелатному типу двумя N,O-лигандами, при этом каждый атом кислорода является также мостиковым по отношению к другому

иону марганца. В катионных комплексах 21 и 22 (рисунок 5) ионы марганца(II) имеют октаэдрическую геометрию за счет хелатной координации двух молекул лиганда и двух мостиковых хлоролигандов.

2.1.2. Синтез комплексов Ni(II) и Zn(II)

1,4-N,О-Лиганды 9 и 10 с ациклическим строением диалкилфосфорильных групп с тетрафтороборатами никеля(II) и цинка(II) образуют трис-N,О-хелатные фац-комплексы 23 – 26 (Схема 8).

Рисунок 6. Структура катиона комплекса 23.

В отличие от них, 1,4-N,О-лиганды **11** – **14** с циклическими фосфорильными фрагментами образуют бис-N,О-хелатные октаэдрические комплексы **27** – **31** (Схема 9).

Схема 9. Синтез комплексов 27 – 31.

Рисунок 7. Структура катиона комплекса 27.

Комплексы никеля(II) 23, 24, 27 - 30 были выделены в виде зеленых порошков, комплексы цинка(II) 25, 26, 31 в виде белых порошков, хорошо растворимых в большинстве органических растворителей. В масс-спектрах MALDI комплексов 23 - 31 наблюдаются пики, соответствующие составу $[ML_2]^{2+}$ и $[ML_2F]^+$. В ИК-спектрах комплексов 23 – 31 наблюдается сдвиг характеристической полосы P=O группы на ~10-20 см⁻¹ в область меньших волновых чисел относительно исходных лигандов, что свидетельствует о координации фосфорильной группы. Структура диамагнитных комплексов цинка(II) 25, 26 и 31 была установлена также методом ЯМР спектроскопии. В спектрах ЯМР ³¹Р комплексов 25, 26 и 31 в CD₃CN наблюдается один сигнал при 52.7 м.д. (для 25), 60.7 м.д. (для 26) и 25.1 м.д. (для 31). Структура комплексов 23, 25 – 28, 30, 31 окончательно была установлена методом РСА (типичные представители на рисунках 6, 7). Хелатные углы в комплексах никеля(II) 23, 27, 28 и 30 составляли 84.34 – 85.66°, а в комплексах цинка(II) 25, 26, 31 – 80.50 – 84.65°. Согласно этим данным, количество координирующих ион металла N,O-хелатирующих лигандов определяется не величиной хелатного угла, а их конформационной жесткостью и стерической загруженностью.

2.1.3. Синтез комплексов Cu(II)

При взаимодействии 1,4-N,О-лигандов с производными меди(II) важным фактором является природа противоиона. С тетрафтороборатом меди и ациклические (9 и 10), и циклические (14) 1,4-N,О-лиганды образуют октаэдрические комплексы 32 - 34 с расположением N,О-лигандов в центральной плоскости октаэдра (Схема 10).

Рисунок 8. Молекулярная структура комплекса **33**.

При взаимодействии с хлоридом меди(II) ациклические 1,4-N,О-лиганды 9 и 10 образуют комплексы 35 и 36, в которых ион меди(II) имеет координационное число 5, тогда как в случае стерически загруженных циклических 1,4-N,О-лигандов 12 и 14 образуются комплексы 37 и 38, имеющие октаэдрическую структуру, аналогичную комплексам 32 – 34, где апикальные позиции занимают хлоролиганды вместо тетрафтороборат-анионов (Схема 11).

Рисунок 9. Структура катиона комплекса 35.

Комплексы меди(II) **32** – **38** были выделены в виде голубых (тетрафтороборатные **32** - **34**) и зеленых (хлоридные комплексы **35** - **38**) порошков, хорошо растворимых в большинстве органических растворителей и в воде. В масс-спектре MALDI комплексов **32** - **38** наблюдаются пики с m/z 429 (для **32** и **35**), 485 (для **33** и **36**), 453 (для **37**), 1121 (для **34** и **38**), которые соответствуют составу [CuL₂]²⁺. В ИК-спектрах комплексов регистрируются полосы фосфорильной группы при 1152-1168 см⁻¹. Согласно данным PCA, пятикоординированный ион меди(II) в **35** и **36** имеет промежуточную между квадратно-пирамидальной и тригонально-бипирамидальной геометрию лигандного окружения (лиганды располагаются под углом 93-117^o) (рисунок 9). В октаэдрических комплексах **32** – **34**, **37**, **38** N,O-хелатные лиганды располагаются в центральной плоскости октаэдра (рисунок 10), а апикальные позиции занимают FBF₃⁻ либо Cl⁻ анионы, или молекулы растворителя, использующегося при перекристаллизации.

2.2. Изучение координационных свойств пиридилсодержащих 1,5-N,Олигандов

Комплексы на основе 1,5-N,О-лигандов отличаются меньшей вариабельностью структур.

При взаимодействии с производными меди(II) сохраняются те же тенденции, как в случае 1,4-N,О-лигандов: при комплексообразовании с хлоридом меди(II) образуются комплексы **39** и **40** с тригонально-бипирамидальной геометрией лигандного окружения иона металла, в случае тетрафторобората меди(II) образуется комплекс **41** с квадратно-пирамидальной геометрией иона меди(II) (Схема 12).

Структура катиона комплекса 40.

Схема 12. Синтез комплексов **39** – **41**.

Молекулярная структура комплекса **41**.

В масс-спектре MALDI комплексов **39** – **41** регистрируются ионы с m/z 457 (**39**) и 513 (**40** и **41**), соответствующие составу [CuL₂]²⁺. Анализ данных РСА (рисунки 11, 12) показал заметно большие значения хелатных углов (89.41 – 93.34°) в комплексах **39** - **41** по сравнению с аналогичными комплексами на основе 1,4-N,О-лигандов (81.63 – 88.00°).

Заметно отличие 1,5-N,О-лигандов в комплексообразовании с производными марганца(II), никеля(II) и цинка(II).

Так, при взаимодействии с хлоридом марганца(II) вместо димерных комплексов образуются моноядерные октаэдрические комплексы 42 и 43 с хелатной координацией двух N,O-лигандов и двух хлоролигандов (Схема 13). При взаимодействии с ацетатом марганца(II) также два N,O-лиганда поддерживают Mn₃(OAc)₆-ядро, образуя аналогичный хелатный комплекс 44 (Схема 13).

Схема 13. Синтез комплексов 42 – 44.

Рисунок 13. Молекулярная структура комплекса 42.

В масс-спектре MALDI комплексов **42** и **43** регистрируются ионы с m/z 484 и 540, соответствующие составу [MnL₂Cl]⁺, в масс-спектре MALDI комплекса **44** регистрируется ион с m/z 737, соответствующий составу [Mn₃L₂(OAc)₂]⁺. В ИК-спектрах комплексов **42** - **44** наблюдаются характеристические полосы фосфорильной группы при 1151, 1164 и 1170 см⁻¹, соответственно, а также ацетатной группы при 1598 см⁻¹ для комплекса **44**.

В реакции с [Ni(CH₃CN)₄(H₂O)₂](BF₄)₂ 1,5-N,О-лиганд **16** вместо ожидаемого трис-N,О-хелатного комплекса образует бис-N,О-хелатный комплекс **45**, структура которого аналогична комплексам никеля(II) **27** – **30** со стерически загруженными циклическими 1,4-N,О-лигандами. В то же время, при взаимодействии с Zn(BF₄)₂·H₂O лиганды **15** и **16** образуют трис-N,О-хелатные комплексы **46** и **47**, как и в случае с 1,4-N,О-лигандами (Схема 14). Вероятно, больший размер иона Zn(II) по сравнению с Ni(II) позволяет первому координироваться тремя молекулами 1,5-N,О-лигандов.

Схема 14. Синтез комплексов 45 - 47.

В ИК-спектрах комплексов **46** и **47** наблюдается сдвиг характеристической полосы P=O группы на ~10-20 см⁻¹ в область меньших волновых чисел относительно исходных лигандов, что свидетельствует о координации фосфорильной группы, и регистрируются интенсивные полосы колебаний BF₄-аниона при 1027-1062 см⁻¹. В MALDI масс-спектрах комплексов **46** и **47** регистрируются пики ионов, соответствующие составу [ZnL₂F]⁺. В спектрах ЯМР ³¹Р диамагнитных комплексов цинка в CD₃CN наблюдается один сигнал при 52.7 м.д. (для **46**) и 60.7 м.д. (для **47**).

Рисунок 14. Структура катионов комплексов 46 (а) и 47 (б).

Согласно данным РСА (рисунок 14), комплексы цинка(II) **46** и **47**, в отличие от аналогов на основе 1,4-N,О-лигандов, кристаллизуются исключительно в виде *мер*-изомеров. Значения хелатных углов комплексов цинка(II) **46** и **47** (87.71 – 92.81[°]) заметно превышают значения комплексов цинка(II) на основе 1,4-N,Олигандов (80.50 – 84.65[°]).

2.3. Координационное поведение хинолилсодержащего 1,5-N,О-лиганда

Отличающееся поведение ко всем ионам 3*d*-металлов продемонстрировал хинолилсодержащий 1,5-N,О-лиганд **18**, который может реализовывать как О-монодентатную, так и хелатную координацию.

С хлоридом меди(II) лиганд **18** независимо от стехиометрического соотношения образует нейтральный моно-лигандный хелатный комплекс **48** (Схема 15).

Схема 15. Синтез комплекса 48.

Рисунок 15. Молекулярная структура комплекса 48.

В масс-спектре ESI комплекса **48** регистрируются пики с m/z 338 и 374, соответствующие составам [CuL]²⁺ и [CuLCl]⁺. В ИК-спектре соединения **48** наблюдаются

полосы валентных колебаний Р=О группы при 1148 см⁻¹. Согласно данным РСА, ион меди в комплексе имеет тетраэдрическую геометрию, сформированную N,O-хелатным лигандом (хелатный угол составляет 90.86°) и двумя хлоролигандами (рисунок 15).

При взаимодействии с хлоридом марганца(II) лиганд **18** образует моноядерный комплекс **49**, в котором две молекулы лиганда реализуют только О-монодентатную координацию (Схема 16).

Схема 16. Синтез комплексов 49 и 50.

Рисунок 16. Молекулярная структура комплекса **50**.

Октаэдрическую геометрию комплекса **49** достраивают четыре молекулы координированной воды, о чем свидетельствует наличие в масс-спектре MALDI комплекса **49** наличие пика осколочного иона при m/z 640, соответствующего составу $[MnL_2(H_2O)_2]^+$, и полосы колебаний гидроксильной группы в координированных молекулах воды при 3401 см⁻¹ в ИК-спектре. Наличие свободного донорного азотного центра в комплексе **49** открывает возможность его протонирования. Так, при перекристаллизации комплекса **49** из CHCl₃, содержащего следы HCl, был получен монолигандный тетраэдрический комплекс **50**, в котором ион марганца О-монодентатно координирован одним фосфиноксидным лигандом и тремя хлорид-анионами, а атом азота лиганда протонирован (рисунок 16).

При взаимодействии с тетрафтороборатом цинка(II) и никеля(II) лиганд **18** образует бис-N,О-хелатные комплексы **51** и **52**, соответственно (Схема 17).

Схема 17. Синтез комплексов 51 и 52.

В масс-спектрах MALDI **51** и **52** регистрируются пики при m/z 633 и 627, соответствующие составу $[ML_2F]^+$ соответственно. В ИК-спектрах комплексов **51** и **52** наблюдаются полосы фосфорильной группы при 1141-1168 см⁻¹ и полосы колебаний тетрафтороборат-анионов при 1033-1077 см⁻¹. Согласно РСА, комплекс **51** имеет тригонально-бипирамидальную геометрию за счет бис-хелатной координации N,Олигандов и координации одной молекулы воды, и шестичленный металлоцикл имеет конформацию «твист-ванна» (рисунок 17). При перекристаллизации комплекса никеля(II) **52** из ацетона или ацетонитрила происходит разрушение комплекса и формирование супрамолекулярных ансамблей, в которых за счет большого количества водородных связей гексаакваникеля бис-тетрафтороборат «капсулирован» четырьмя молекулами лиганда (рисунок 18).

Рисунок 17. Структура катиона Рисунок 18. комплекса 51.

Межмолекулярные контакты В супрамолекулярном $[Ni(H_2O)_6]^{2+}$ ансамбле с лигандами 18.

2.4. Синтез комплексов Ln(III) с N-гетероциклсодержащими 1,4- и 1,5-N,Олигандами

При комплексообразовании 1,4- и 1,5-N,О-лигандов с ионами лантаноидов(III) определяющими оказались условия реакции и пространственная загруженность лиганда, влияющая на число координирующих катион металла лигандов и тип координации. Так, при взаимодействии пиридил- или хинолилзамещенных лигандов 9, 10, 15, 18 с EuCl₃·6H₂O или TbCl₃·6H₂O в соотношении металл : лиганд = 1 : 3 были получены с хорошими выходами моноядерные заряженные аквакомплексы 53 – 59 с четырьмя или двумя О-монодентатно координирующими лигандами (Схема 18).

Рисунок 19. Структура катиона комплекса 57.

Рисунок 20. Структура катиона комплекса 59.

Схема 18. Синтез комплексов **53** – **59**.

Однако, изменив условия реакции, и проведя ее в инертной атмосфере с использованием предварительного вакуумирования исходных солей, при взаимодействии лигандов 11 и 16 с EuCl₃·6H₂O или TbCl₃·6H₂O и YbI₂ в соотношении лиганд : металл = 3 : 1 и 2 : 1 соответственно удалось выделить бисхелатные комплексы **60** – **62** (Схемы 19, 20).

Рисунок 21. Молекулярная структура комплекса **60**.

Схема 19. Синтез комплексов **60** и **61**.

Рисунок 22. Структура катиона комплекса 62.

Схема 20. Синтез комплекса 62.

Комплексы 53-61 были получены в виде белых порошков. В масс-спектрах MALDI - 57 53 наблюдаются пики, соответствующие ионам комплексов состава $[L_2M(OH)(H_2O)_3]^{2+}$ и $[L_2M(OH)_2(H_2O)_2]^+$, а в масс-спектрах **58** и **59** - составу $[L_2M(H_2O)_4]^{3+}$. В масс-спектрах MALDI комплексов 60 и 61 наблюдаются пики, соответствующие составу [L₂MCl₂]⁺. В ИК-спектрах всех комплексов наблюдаются полосы фосфорильной группы при 1140 - 1159 см⁻¹, и координированных молекул воды в области ~3400 см⁻¹ для комплексов 53 – 59. В спектрах ЯМР ³¹Р соединений европия(III) в DMSO-d₆ наблюдается один широкий сигнал при 36.3 – 48.9 м.д., а в спектрах ЯМР ³¹Р соединений тербия(III) в DMSO-d₆ наблюдается один широкий сигнал при 40.7 - 70.0 м.д. Согласно РСА, в комплексах 57 - 59 ион лантаноида реализует координационное число 8 и координационный полиэдр имеет вид двухшапочной тригональной призмы (рисунки 19, 20). Лиганды координируются О-монодентатно. В комплексах 60 и 61 ион лантаноида имеет координационное число 7, реализованное за счет N,O-хелатного связывания двумя молекулами фосфиноксида 16 и тремя хлоролигандами, координационный полиэдр можно описать как одношапочную тригональную призму (рисунок 21). В комплексе 62 ион иттербия(III) имеет координационные число 8, которое реализуется за счет хелатной координации четырех молекул фосфоланоксида (рисунок 22). Хелатные углы в комплексах лантаноидов составляют 69 – 71°, что значительно меньше по сравнению с комплексами 3*d*-металлов.

Таким образом, было получено 44 комплекса переходных металлов с 1,4-N,О- и с 1,5-N,О-лигандами циклического и ациклического строения и выявлены особенности их комплексообразования.

Для всех полученных лигандов и их комплексов были изучены их каталитические, люминесцентные и биологические свойства для выявления их потенциальных практически полезных свойств.

2.5. Каталитическая активность

Комплексы марганца(II) **19 - 21**, **42** – **44** и никеля(II) **23**, **27**, **28**, **45** изучали в качестве катализаторов электрохимического синтеза водорода с использованием протонированного ДМФА в качестве источника протонов. Комплексы никеля(II) оказались неэффективными. В реакциях с комплексами марганца **19 - 21**, **42 - 44** на ЦВА (циклической вольтамперограмме) наблюдается появление нового пика при потенциалах от -1.00 до -1.30 В и увеличение его тока (Рисунок 23). Отношения максимума тока нового пика к току пика диффузионного восстановления комплексов колебались от 1.1 до 17.7.

Рисунок 23. ЦВА для комплекса 21 с возрастающими концентрациями DMFH⁺.

Наиболее эффективными катализаторами в данной реакции оказались моноядерный комплекс марганца **43** на основе диизопропил(пиридин-2-илметил) фосфиноксида и биядерный комплекс 19 на основе диэтил(пиридин-2-ил)фосфиноксида $I_{cat}/I_{diff} = 17.7$ и 13.7, соответственно. Самую каталитическую активность низкую В реакции электрохимического выделения водорода проявил трёхъядерный ацетатный комплекс 44 с $I_{cat}/I_{diff} = 1.1$.

2.6. Фотофизические свойства

Для диалкилфосфорилпиридинов и хинолинов и их комплексов Mn(II), Zn(II) и Ln(III) были изучены фотофизические свойства. Лиганды 9, 10, 14 – 18 и их комплексы марганца(II) 19 – 21, 42 – 44, 49 и цинка(II) 25, 26, 31, 46, 47, 51 обладают синглетной эмиссией в сине-зеленой области спектра ($\lambda_{em} = 363 - 505$) за счет внутрилигандных π - π^* переходов, при этом эмиссия лигандов усиливается в присутствии ионов металла со смещением в красную область спектра на 12-98 нм относительно исходных лигандов и увеличением квантовых выходов до 5% (Рисунок 24).

Комплексы лантаноидов **53** – **61** продемонстрировали характерную для тербия(III) и европия(III) эмиссию, соответствующую *f-f* переходам в ионе лантаноида (Рисунок 25).

Рисунок 25. Спектры возбуждения и эмиссии комплексов тербия(III) 54, 56, 59 и 61 (слева) и европия(III) 53, 55, 57, 58 и 60 (справа) в твердой фазе при комнатной температуре.

В спектрах эмиссии комплексов Tb(III) наблюдаются характерные пики при 488-489, 542-544, 546-549, 581-585 и 619-621 нм, которые относятся к переходам ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (J = 6-2), соответственно. Спектры излучения комплексов Eu(III) **53**, **55**, **57**, **58** и **60** в твердом состоянии содержат характерные пять расщепленных пиков излучения с центрами 576-580, 591-592, 611-613, 653 и 699-702 нм, возникающие из-за внутриконфигурационных ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0-4) переходов иона Eu³⁺, соответственно. Квантовые выходы аквакомплексов **53** – **59** составляли 1-5%, а для хлоридных комплексов **60** и **61** они достигали 12%.

2.7. Цитотоксические свойства диалкилфосфорилпиридинов и –хинолинов и их Mn(II), Cu(II), Zn(II) комплексов

Для всех полученных в данной работе лигандов и комплексов с биогенными металлами была изучена активность по отношению к раковым клеткам M-HeLa (клеточная линия карциномы шейки матки) и HuTu80 (клеточная линия аденокарциномы двенадцатиперстной кишки) и здоровым клеткам человека Chang Liver (клетки печени). В качестве препаратов сравнения использовали субстанции тамоксифена, доксорубицина, олигомицина, сорафениба и 5-фтороурацила. В таблице 1 представлены значения IC₅₀ и индексов селективности (SI) лигандов и их металлокомплексов с SI ≥ 2.5.

	IC ₅₀ (мкМ)						
Соединения	Daron		Нормальные				
	Таков	быс кле	клеточные линии				
	M-HeLa	SI	HuTu80	SI	Chang Liver		
14	24.5 ± 2.0	1.9	$9.4{\pm}0.7$	4.9	46.3±3.7		
18	70.0	>3	>100	-	>200		
19	>100	-	13.1±0.9	7.6	>100		
25	58.0	4	100	2.2	215		
26	66.0	2.5	100	1.7	167		
31	30.2±2.5	3.3	5.9±0.4	17	100		
39	60.0 ± 4.8	1.4	27.1±2.1	3.0	82.8±6.4		
43	92.4±7.5	1.1	25.6±1.9	3.9	>100		
44	>100	-	23.1±1.9	4.3	>100		
48	27.3	7	12.5	15	185		
49	81.0±6.1	1.1	13.3±0.9	6.7	89.0±7.3		
51	66.0	9	>100	-	577		
Тамоксифен	28.0±2.5 1.7 -			46.2±3.5			
Доксорубицин	3.0±0.2	1.0	3.0±0.2	1.0	3.0±0.1		
Олигомицин	3.0±0.2	1.0	5.8±0.4	0.5	3.0±0.1		
5-фтороурацил	62.0±4.7	1.4	65.2±5.4	1.3	86.3±6.5		
Сорафениб	35.6±2.8	ns	8.0 ± 0.6	4.4	35.0±2.6		

Таблица 1. Цитотоксические свойства соединений-лидеров.

Опыты повторялись трижды. Результаты выражены как среднее значение \pm стандартное отклонение.

Согласно значениям IC₅₀, цитотоксические свойства в отношении M-HeLa и HuTu80 проявляют стерически загруженные лиганды - Р-оксид 1,3,5-диазафосфоринан **14** и диизопропилфосфорилхинолин **18**. Индексы селективности (SI), равные 4.9 по отношению к линии HuTu80 (для **14**) и SI > 3 по отношению к линии M-HeLa (для **18**)

превышают значения для стандартных препаратов сравнения. Хелатирование с ионом металла преимущественно усиливает цитотоксичность лигандов по отношению к раковым клеткам и уменьшает цитотоксичность по отношению к нормальным клеткам. Высокой цитотоксичностью по отношению к раковым клеткам обладают комплексы переходных металлов на основе стерически загруженных лигандов: комплексы меди(II) **48**, марганца(II) **49** и цинка(II) **51** на основе диизопропил(хинолин-2-ил)фосфиноксида **18** с индексами селективности 15 и 6.7 по отношению к HuTu80 и 9 по отношению к M-HeLa, соответственно, и комплекс цинка(II) **31** на основе Р-оксида 1,3,5-диазафосфоринана **14** с самым высоким индексом селективности, равным 17, по отношению к HuTu80. Важно отметить, что практически все комплексы марганца(II), никеля(II), меди(II) и цинка(II) за редким исключением не обладают цитотоксичностью по отношению к Здоровым клеточным линиям Chang Liver, либо их значения IC₅₀ по отношению к Chang Liver ниже, чем у стандартных препаратов, что делает их перспективными в данной области применения.

ЗАКЛЮЧЕНИЕ

По результатам проведенного диссертационного исследования сформулированы следующие основные **результаты и выводы**:

1. Разработаны методики синтеза пиридил- и хинолилсодержащих фосфиноксидов циклического и ациклического строения с алкильными заместителями у атома фосфора с 1,4- и 1,5-расположением N,O-донорных центров, основанные на 1) окислении третичных пиридилсодержащих фосфинов; 2) взаимодействии диалкилфосфинистых кислот с пиридил-, хинолилсодержащими хлорпроизводными в сверхосновной среде; 3) нуклеофильном присоединении диалкилфосфинистых кислот к активированному пиридин N-оксиду.

2. На основе N-гетероциклсодержащих фосфиноксидов синтезирован широкий ряд монои полиядерных заряженных и нейтральных комплексов с ионами 3*d*- и 4*f*-металлов (Mn(II), Ni(II), Cu(II), Zn(II), Eu(III), Tb(III) и Yb(III)). Показано, что Nгетероциклсодержащие фосфиноксиды проявляют N,O-хелатную и O-монодентатную координацию, при этом количество координирующих ион металла лигандов определяется размером хелатного угла, стерической загруженностью и гибкостью лиганда, природой противоиона, а также условиями проведения реакции (аэробные или анаэробные условия, растворитель).

3. Впервые установлено, что диалкилфосфорилпиридины и –хинолины обладают синглетной люминесценцией в сине-зеленой области спектра ($\lambda_{em} = 362 - 505$ нм). Комплексы Mn(II) и Zn(II) на их основе люминесцируют в сине-фиолетовой и синезеленой области спектра за счет внутрилигандных π - π * переходов, при этом наблюдается небольшое смещение эмиссии в красную область спектра и увеличение квантовых выходов (до 3-5%) по сравнению со свободными лигандами (1%), что связано со стабилизацией лигандов ионами металлов. Комплексы лантаноидов(III) обладают интенсивной триплетной люминесценцией в красной (Eu(III)) и зеленой (Tb(III)) области спектра с милисекундными временами жизни и квантовыми выходами 1-12%, обусловленной металлоцентрированными *f-f*-переходами.

4. Установлено, что комплексы марганца(II) на основе диэтил(пиридин-2ил)фосфиноксида и диизопропил(пиридин-2-илметил)фосфиноксида являются эффективными катализаторами электрохимического синтеза водорода с использованием протонированного диметилформамида в качестве источника протонов. 5. Впервые установлено, что N-гетероциклсодержащие фосфиноксиды являются нетоксичными в отношении нормальных клеточных линий Chang Liver, а хелатирование с ионом металла избирательно усиливает цитотоксичность лигандов по отношению к раковым клеткам HuTu80 и M-HeLa и уменьшает цитотоксичность по отношению к здоровым клеткам Chang Liver. Диизопропилфосфорилхинолин и P-пиридил-P-оксид 1,3,5-диазафосфоринан и их комплексы Mn(II), Cu(II) и Zn(II) проявляют наибольшую цитотоксичность по отношению к клеткам M-HeLa и HuTu80 с высокой селективностью, превышающим селективность известных противоопухолевых препаратов тамоксифена, доксорубицина, олигомицина, 5-фторурацила и сорафениба. Лидерами являются комплекс меди(II) на основе диизопропилфосфорилхинолина и комплекс цинка(II) на основе Р-оксида 1,3,5-диазафосфоринана с индексами селективности 15 и 17 по отношению к раковой клеточной линии HuTu80.

Перспективы дальнейшей разработки темы. Результаты диссертационной работы являются фундаментальной основой для проведения дальнейших исследований с целью получения новых N-гетероциклсодержащих фосфиноксидов и биологически активных комплексов Mn(II), Ni(II), Zn(II) и, преимущественно, Cu(II) на их основе за счет вариации как алкильных заместителей у атома фосфора, так и N-гетероароматического фрагмента. Обнаруженные каталитические свойства моноядерных комплексов Mn(II) в реакциях электрохимического выделения водорода открывают возможности для конструирования новых комплексов аналогичного строения на основе других Nгетероциклсодержащих фосфиноксидов. Сведения о координационной способности Nгетероциклсодержащих фосфиноксидов по отношению к лантаноидам являются фундаментальной основой для дальнейшего исследования ИХ экстракционной способности ионов лантаноидов и актиноидов из отработанного радиоктивного топлива. Кроме того, полученные лиганды имеют перспективы в создании комплексов других переходных металлов, не представленных в данной работе, в частности железа, кобальта и т.д., обладающих каталитическими свойствами.

Основные результаты диссертации изложены в следующих публикациях:

- A. V. Shamsieva, E. I. Musina, K. R. Trigulova, A. A. Karasik, O. G. Sinyashin. Synthesis of 1-Pyridylphospholane-1-Oxides and their Ni(II) Complexes // Phosphorus, Sulfur, Silicon and the Related Elements. 2016. V. 191. P. 1630-1631.
- A. V. Shamsieva, K. R. Trigulova, R. R. Fayzullin, V. V. Khrizanforova, Yu. H. Budnikova, E. I. Musina, A. A. Karasik. Synthesis of water-soluble bis-N,O-chelate nickel(II) complexes based on new ligands — P-pyridyl-containing phospholane oxides // *Russian Chemical Bulletin, International Edition.* – 2018. – V. 67. – P. 1206-1211.
- E. M. Zueva, M. M. Petrova, A. V. Shamsieva, K. R. Trigulova, E. I. Musina, R. R. Fayzullin, A. S. Bogomyakov, V. I. Ovcharenko, A. A. Karasik. Insight into the influence of terminal ligands on magnetic exchange coupling in a series of dimeric copper(II) acetate adducts // International Journal of Quantum Chemistry. 2019. P. e26145.
- K. R. Trigulova, A. V. Shamsieva, R. R. Fayzullin, P. Lonnecke, E. Hey-Hawkins, A. D. Voloshina, E. I. Musina, A. A. Karasik. Copper(II) Complexes with N,O-Hybrid Ligands Based on Pyridyl-Containing Phospholane Oxides // Russian Journal of Coordination Chemistry. 2020. V. 46. P. 600–607.
- K. R. Trigulova, A. V. Shamsieva, A. I. Kasimov, I. A. Litvinov, S. K. Amerhanova, A. D. Voloshina, E. I. Musina, A. A. Karasik. Copper(II) and manganese(II) complexes based on a new N,O-chelating ligand bearing the 1,3,5-diazaphosphorinane moiety // *Russian Chemical Bulletin, International Edition.* 2022. V. 71. P. 1420-1421.

K. R. Enikeeva¹, A. V. Shamsieva, A. I. Kasimov, I. A. Litvinov, A. P. Lyubina, A. D. Voloshina, E. I. Musina, A. A. Karasik. Pyridyl-containing phosphine oxides and their chelate copper(II) complexes // *Inorganica Chimica Acta*. – 2023. – V. 545. – P. 121286.

Тезисы докладов:

- 7. **Тригулова К.Р.,** Шамсиева А.В., Мусина Э.И. Синтез Р-пиридилсодержащих фосфоланоксидов и комплексов никеля(II) на их основе // *II Международная школа-конференция студентов, аспирантов и молодых ученых «Материалы и технологии XXI века».* Казань, Россия. **2016**. Сборник тезисов. С. 332.
- 8. **Тригулова К.Р.,** Шамсиева А.В., Мусина Э.И. Синтез комплексов Ni(II) и Cu(II) с Р-оксидами фосфоланопиридинов // *XX Всероссийская молодежная школа-конференция по органической химии.* Казань, Россия. **2017**. Сборник тезисов. С. 209.
- 9. Тригулова К.Р., Шамсиева А.В., Мусина Э.И., Карасик А.А. Синтез и изучение свойств комплексов Cu(II) на основе оксидов Р-пиридилсодержащих фосфоланов // Научная конференция "Динамические процессы в химии элементоорганических соединений", посвященная 115-летию со дня рождения академика Б.А. Арбузова. Казань, Россия. 2018. Сборник тезисов. С. 171.
- Trigulova K., Shamsieva A., Shaimardanov A., Fayzullin R., Musina E., Karasik A. Luminescent Mn(II) complexes based on N,O-hybrid pyridyl-containing phosphine oxides // The 5th EuChemS Inorganic Chemistry Conference. Moscow, Russia. 2019. Book of abstracts. – P. 335.
- 11. Тригулова К.Р., Шамсиева А.В., Шаймарданов А.Р., Файзуллин Р.Р., Мусина Э.И., Карасик А.А. Новый пиридилсодержащий лиганд-диэтил(пиридин-2-ил)фосфиноксид и его координационные свойства // XXI Менделеевский съезд по общей и прикладной химии. Санкт-Петербург, Россия. 2019. Сборник тезисов. С. 464.
- 12. **Тригулова К.Р.,** Шамсиева А.В., Файзуллин Р.Р., Мусина Э.И., Карасик А.А. Синтез комплексов Cu(II), Ni(II), Mn(II) на основе новых пиридилсодержащих диалкилфосфиноксидов // *X Конференция молодых ученых по общей и неорганической химии*. Москва, Россия. **2020**. Сборник тезисов. С. 257-258.
- 13. Тригулова К.Р., Шамсиева А.В., Файзуллин Р.Р., Мусина Э.И., Карасик А.А. Синтез новых диалкилфосфиноксидов с N-гетероциклическими заместителями // II Научная конференция «Динамические процессы в химии элементоорганических соединений», посвященная 75-летию ИОФХ им. А.Е. Арбузова и Казанского научного центра РАН. Казань, Россия. 2020. Сборник тезисов. – С. 170.
- 14. Тригулова К.Р., Касимов А.И., Шамсиева А.В., Файзуллин Р.Р., Мусина Э.И., Карасик А.А. Синтез новых комплексов Ni(II), Mn(II) с N-гетероциклсодержащими диалкилфосфиноксидами // XI Конференция молодых ученых по общей и неорганической химии. Москва, Россия. 2021. Сборник тезисов. – С. 279-280.
- 15. **Trigulova K.R.,** Fayzullin R.R., Voloshina A.D., Musina E.I., Karasik A.A. Copper(II) complexes based on diethyl(pyridin-2-yl)phosphine oxide and their biological activity // 23rd International Conference on Phosphorus Chemistry. Częstochowa, Poland. **2021**. Book of abstracts. P-054.
- 16. Тригулова К.Р., Касимов А.И., Исламов Д.Р., Волошина А.Д., Мусина Э.И., Карасик А.А. Новые комплексы марганца(II) на основе N-гетероциклсодержащих диалкилфосфиноксидов // XXVIII Международная Чугаевская конференция по координационной химии. Россия, Краснодарский край. 2021. Сборник тезисов - С. 323.
- 17. Еникеева К.Р., Касимов А.И., Исламов Д.Р., Литвинов И.А., Колесников И.Е., Волошина А.Д., Мусина Э.И., Карасик А.А. Комплексы Zn(II), Ln(III) с диалкилфосфорилпиридинами и –хинолинами // III Научная конференция с международным участием, посвященная 145летию со дня рождения академика А.Е. Арбузова. Казань, Россия. 2022. Сборник тезисов. – С. 117.

¹ Фамилия Тригулова (Trigulova) была изменена на «Еникеева» (Enikeeva) 22.07.2022 года